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SUES-200: A Multi-height Multi-scene Cross-view
Image Benchmark Across Drone and Satellite

Runzhe Zhu, Ling Yin, Mingze Yang, Fei Wu, Yuncheng Yang, Wenbo Hu

Abstract—The purpose of cross-view image matching is to
match images acquired from the different platforms of the same
target scene. With the rapid development of drone technology,
how to help drone positioning or navigation through cross-view
matching technology has become a challenging research topic.
However, due to the existing public datasets don’t include the
differences in images obtained by drones at different heights, and
the types of scenes are relatively homogeneous, which makes the
models unable to adapt to complex and changing scenes. There is
still potential to improve the accuracy of the models. We present a
new cross-view dataset, SUES-200, to address these issues. SUES-
200 contains images acquired by the drone at four flight heights
and the corresponding satellite view images under the same target
scene. To our knowledge, SUES-200 is the first dataset that con-
siders the differences generated by aerial photography of drone
at different flight heights. In addition, we build a pipeline for
efficient training testing and evaluation of cross-view matching
models. Then, we comprehensively analyze the performance of
feature extractors with different CNN architectures on SUES-200
through an evaluation system for cross-view matching models and
propose a robust baseline model on this dataset. The experimental
results show that SUES-200 can help the model learn features
with high discrimination at different heights.

Index Terms—Cross-view Image Matching, Drone, Bench-
mark, Image Retrieval, Pipeline

I. INTRODUCTION

ROSS-VIEW matching technique [1] is an essential
research topic in computer vision, and this technique can
be applied to many aspects, such as localization, navigation,
autonomous driving, object detection. With more diverse ways
of image acquisition, satellite and drone platforms play an
important role in image acquisition. A standard cross-view
matching work is as follows: given an image to be retrieved
in the query dataset of one view, the matching system can find
an image under the exact location in a large-scale candidate
(gallery) dataset of another view. For cross-view matching
under satellite and drone platforms, two main tasks need to
be tackled: 1.Drone localization:Drone — Satellite. 2.Drone
navigation:Satellite — Drone.The key of the cross-view
matching technique is to learn the invariant and discriminative
features of images under different views.
Most of the previous studies on cross-view matching [2]—
[7] focus on the cross-view matching between street view
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Fig. 1. A representative target scene of SUES-200 contains fifty drone view
images from four heights and one satellite view image.

and satellite view, or between street view and bird-view,
for example, the datasets CVUSA [8] and CVACT [9] use
panoramic street view and satellite view of the same target
scene to form a cross-view image pair and build a deep neural
network model to solve the problem of feature extraction.
However, the quality of matching between street view and
satellite image is usually limited to the small spatial scale of
street view, easy to be obscured, and interfered with, which
leads to the model not extracting the appropriate features.

With the continuous development of drone technology [10]—
[12], the flexibility and stability of drones are continuously
improved, and using drone platforms can well describe the
target scenes at different spatial and temporal scales. The
traditional Drone view and satellite view image matching
technology [13]-[15] is concentrated in the military field,
where fixed-wing drones fly at higher flight height and collect
images in real-time. The matching system match drone view
image with satellite view image to infer the location of the
drone. This autonomous positioning system is not affected by
the external environment and has strong robustness in complex
electromagnetic environments. However, such systems gener-
ally perform matching by extracting the hand-craft features
[16]-[18] of images. Such feature extraction algorithms are
less robust and susceptible to unfavorable factors such as
lighting and occlusion, especially when drones fly at lower
heights. There are many false matches or missing matches
due to the excessive difference between the acquired images
and the satellite view images.

Recently, new progress has been made in cross-view view
matching research. Zheng et al. [19] establish the first drone-
based multi-source cross-view matching dataset, University-
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1652, which contains three views: street view, drone, and
satellite. It also publishes a baseline by designing a multi-
branch CNN network. [20]-[24] conduct a more in-depth
study of University-1652 and significantly improve the accu-
racy of the matching. However, University-1652 still has the
following problems: 1.University-1652 uses synthetic images
of drone views, which lack real-world lighting variations. 2.no
attention is paid to the differences in drone images at different
flight heights. 3.the captured scenes are of a single type,
most buildings on the campus. These problems lead to poor
differentiation of the features extracted by the model and poor
robustness of the drone when flying at different heights.

Therefore, we propose a multi-height, multi-scene dataset
across drone and satellite views based on the University-
1652 dataset, called SUES-200. SUES-200 has the following
features: 1.SUES-200 collects data from the same scene at
four heights(150m, 200m, 250m, 300m). 2.SUES-200 contains
more scenes, such as parks, schools, lakes, and public build-
ings. 3.SUES-200’s drone view images are all captured in the
real world, which is closer to the actual application. SUES-
200 contains 200 target scenes, 120 scenes in the training set,
and 80 scenes in the test set. Some of the data in SUES-200
are shown in Figure 1.

The traditional evaluation metrics for cross-view matching
datasets are Recall@K [25] and AP, which cannot fit the
new SUES-200 characteristics. Therefore, we design a new
evaluation system that focuses on three aspects of model:
l.robustness at different heights. 2.preference for two tasks.
3.real-time performance during model inference. To address
the problem that the training and testing process of previous
cross-view matching models is complicated, and previous
models are not appropriate to modify the model structure.
We build a pipeline dedicated to cross-view matching, which
helps us efficiently train, test, and evaluate models. In the
experiment, we train and test feature extractors of different
CNN architectures on SUES-200 through a pipeline. The
model with the best overall evaluation results is released
as the baseline model of SUES-200. We also evaluate the
effect of multi-angle feature fusion on matching results and
compare the performance of transfer learning models. Finally,
the baseline model is extended and tested in the ablation
experiment section. Our results show that SUES-200 can help
the model learn high-level features in various and different
heights scenes. As the flight height rises, the drone gradually
becomes less affected by the environment and camera pose,
and the performance metrics increase.

In Summary, the main contributions of this paper are as
follows:

o We build a new cross-view matching dataset: SUES-200.
The main feature of SUES-200 is that it contains different
heights in the same target scene. All images are acquired
in real environments of multiple types of scenes, in-
cluding real-world light and shadow transformations and
disturbances, which are closer to the actual application
scenarios.

o We propose a new evaluation system based on the charac-
teristics of SUES-200, which evaluates the robustness of
the model at different heights, the preference for different

tasks, and the real-time performance, in addition to the
classical Recall@K and AP.

« We establish an efficient pipeline to train and test different
CNN-based mainstream models and release the baseline
model of SUES-200 according to the comprehensive
evaluation results.

II. RELATED WORK

Many previous cross-view datasets have focused on col-
lecting images at the same location from different viewpoints
via different platforms (e.g., panoramic cameras, satellites,
drones, smartphones) to form image pairs and build datasets
based on these image pairs. The dataset [2] utilizes publicly
available data to create a cross-view dataset in which view
one is the aerial view or “bird” view and view two is the
street view, which contains a total of 78K data pairs. Tian
et al. [4] mainly collected some locations in the city and
constructed image pairs using “brid” view and the street view.
In particular, this dataset also incorporates semantic informa-
tion to label the corresponding buildings in the images from
different views. They consider the differentiation of buildings
a critical task in urban localization, so the module for object
detection is accounted for in their network structure. In order
to evaluate the model, they use PR curves and AP to evaluate
the experimental results. CVUSA [26] a standard cross-view
dataset consisting of panoramic street view and satellite view
image pairs. Many previous works have been conducted based
on this dataset. CVACT [9] is a larger panoramic dataset
than CVUSA, with improved satellite image resolution and
number of test sets compared to CVUSA, and with GPS-
tag added to the corresponding scenes. Both CVACT and
CVUSA use Recall@K to evaluate their matching results. In
the field of multi-source cross-view scene matching, Zheng
et al. [19] propose University-1652, the first geo-localization
dataset based on the drone, which contains image data pairs
consisting of satellite view-drone view-street view of 1652
buildings in 72 universities. University-1652 generally has one
satellite viewpoint image, fifty-four drone viewpoint images,
and multiple street view images at a location. Due to the
unaffordable cost of the real-world flight, the drone viewpoint
data in this dataset is obtained by simulated flight in Google
Earth, where the drone simulation flight route is fly around
the target scene and gradually drops in height. University-
1652 adopts Recall@K and AP to evaluate their matching
results. Inspired by the idea of University-1652, we collect
the SUES-200 dataset, which emphasizes the differences in
images acquired by drones at different heights and extends the
types of scenes, all of which were acquired in real scenarios.

With the publication of the University-1652 dataset,
progress has been made in the past year in cross-view match-
ing algorithms based on drone views and satellite views.
Liu el at. [20] propose LCM utilizes ResNet [27] as the
backbone network and trains the image retrieval problem
as a classification problem, and uses data augmentation to
extend the satellite view images. The results show that LCM’s
Recall@1 and AP improve by 5-10 % over the baseline of
University-1652. Wang el at. [22] design LPN after consider-
ing the contextual information of neighboring regions, which
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Fig. 2. The flight height of the drone when collecting images is 150m, 200m,
250m, 300m. The flight trajectory is one circle around the target scene

apply the square-ring partition strategy to divide feature maps.
This strategy has good robustness to rotation changes. LPN
achieves good performance on University-1652, CVACT, and
CVUSA.Tian el at. [23] present a method that integrates the
spatial correspondence between the satellite view and the
surrounding area information, which consists of two parts, 1.
converting the tilted view of the drone into a vertical view by
perspective transformation. 2. making the image of the drone
view closer to the satellite view by conditional GAN [28],
the experimental results show that the method improves the
accuracy by 5% over LPN on University-1652. Inspired by
the attention mechanism, Zhuang el at. [21] develop MSBA
in order to eliminate the differences in images acquired
from different viewpoints. MSBA cuts the image into several
parts with different scales, where the self-attention mechanism
makes feature extraction more effective. The results show that
MSBA performs better than LPN in accuracy and inference
efficiency. We train cross-view matching models in the form
of training classification models and then test and evaluate
the performance of different backbone networks such as VGG
[29], ResNet, DenseNet [30] in extracting features at different
heights by pipeline.

ITTI. SUES-200 DATASET
A. Dataset description

The cross-view matching dataset has the characteristics of
multiple sources, multiple scenes, and panoramic views. We
collect multi-source images of satellite views and correspond-
ing drone views at 200 locations in the vicinity of our school.
Specifically, to enable the model to learn highly discriminative
features at different heights, we collect drone view images at
150m, 200m, 250m, and 300m. The rich multi-type scenes
enable the models trained by the dataset to be applied in real
environments. Therefore, SUES-200 selects a broader range
of scene types, not limited to campus buildings but parks,
schools, lakes, and public buildings. Another practical problem
is that drones have to fly continuously over the same area, so
the close proximity of some of the target locations chosen for
the SUES-200 means that these targets will be very similar, as
shown in Figure 2. To help the subsequent matching system,
the cross-view matching model needs to distinguish these
minor differences and extract valid invariant features in the
image. In addition, the images acquired by the drone during
the flight are usually one side of the target scene. In order
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Fig. 3. A,B,C are the connection points of two consecutive satellite view
images of the same area, and we give similar drone view images at the
connection points.

to help the model extract high-quality features on different
sides, the drone flies one lap along with the target with an
onboard camera. The image of the drone’s viewpoint in this
scene consists of 50 frames of images evenly extracted from
the flight video. The flight trajectory of the drone and the
sampling process are shown in Figure 3.

In order to prevent information loss due to image resolution,
both drone images and satellite images in SUES-200 use the
original resolution of 1080 x 1080 and 512 x 512. There are
200 locations with 50 drone view images and 1 corresponding
satellite view image for each location. SUES-200 is divided
into training and test sets, where 60% is training data and 40%
is test data. To accomplish the two tasks mentioned in the
introduction, the test data include query drone dataset, query
satellite dataset, gallery drone dataset, and gallery satellite
dataset. Among them, the gallery dataset contains the test data
and adds the training data as confusion data to increase the
difficulty of matching. The comparison and statistics of the
datasets are shown in Table I and Table II.

Finally, we summarize the new characteristics of the SUES-
200 dataset:

1) Multi-height: SUES-200 contains data collected at dif-
ferent heights: 150m, 200m, 250m, 300m, and can
evaluate model metrics at different heights. To our best
knowledge, SUES-200 is the first cross-view dataset
containing drone-view images from different heights.
Multi-scene: SUES-200 contains data from different
types of scenes. It can help models extract invariant
features in more scenes also expands the scope of
scene applications for drone-based cross-view matching
techniques.

Continuous scenes: Some of the SUES-200 target
scenes are collected in the same area, so these scenes
are continuous and similar, which is a challenge to the

2)

3)
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TABLE I
COMPARISON BETWEEN SUES-200 AND OTHER CROSS-VIEW DATASETS.

Datesets SUES-200 University-1652 [19] CVUSA [26] Tian et al [4].
Platform Drone,Satellite Drone,Ground,Satellite  Ground,Satellite ~ Ground,45° Aerial
Target Diversity Building User User
Height difference TRUE FALSE FALSE FALSE
Training 120 * 51 701 * 71.64 35.5k * 2 15.7k * 2
Images/Location 50 + 1 51+ 16.64 + 1 1+1 1+1
Evaluation Recall@K & AP & Robustness & Preference & Real-Time Recall@K & AP Recall@K PR&AP

TABLE II
STATISTICS OF SUES-200 TRAINING AND TEST SETS, INCLUDING THE
IMAGE NUMBER AND THE SCENE NUMBER OF TRAINING SET, TESTING
SET.

Training Dataset

Views Locations  Images at Each Height  Total
Drone 120 6000 24000
Satellite 120 _ 120

Testing Dataset

Views Locations  Images at Each Height ~ Total
Drone query 80 4000 16000
Satellite query 80 _ 80
Drone gallery 200 10000 40000
Satellite gallery 200 _ 200

model’s ability to differentiate, but it also more closely
matches the actual drone flight environment.

B. Evaluation Protocol

This chapter introduces the evaluation system of SUES-200.
In response to the existing real-world problems, in addition
to the traditional Recall@K [3], [9], [31] and AP [4], [32]
evaluation metrics, we propose 1.method to measure model
robustness at different heights. 2.method to evaluate model
preference for different tasks. 3.method to evaluate model real-
time performance.

Recall@K and AP. SUES-200 contains a total of 200
target scenes, 120 scenes for training, and 80 scenes for
testing. One hundred twenty scenes from the training are also
included in the gallery as distractors. We note that there is
no overlap between the training and testing data. Recall@K is
very sensitive to the position of the first true-matched image
appearing in the ranking of the matching result. Therefore, it is
suitable for a test dataset that contains only one true-matched
image in the candidate gallery. The AP is the area under the
precision-recall (PR) curve, which considers the position of
all true-matched images in the evaluation. The equations for
Recall@K and AP are shown as follows:

1, if orderyye < K +1
Recall@K —  © U orderirue <K+ (1)

0, otherwise

Th+1

— (2
Ty + Fp, &

1 = phot +pn
AP = — ch=l T Ph wh — —
-~ Z 5 where pg =1 py,
h=1
Robustness. Since SUES-200 differentiates the images
acquired by the drone at different heights, measuring the
robustness of the model at different flight heights is also an

important evaluation index. So we present a method to evaluate
the robustness of the model based on different heights, which
is calculated as follows.

—  (Why + Yhy T Yiy T Vi)
Y= 1 3)

yfl represents the recall@1 accuracy of model ¢ at a certain
height, y* represents the average accuracy of model ¢ at four
heights.

1
Ci = —— — “4)
Z:l lvi, — v
X = {C17CQ>C37“'7cm} (5)

For the set X we normalize all its elements between 0.4
and 0.6 and the result is indicated by X.q7cq

X —min(X)
Xstd = : 6
v maz(X) — min(X) ©)
KXscaled = Xstd X (06 — 04) + 0.4 (7)

Finally, the result of robustness of model ¢ is expressed as:

€i X (Yhy + Yy + Yy + Yi)
4

Preference. We consider that cross-view matching based
on drone platforms and satellite platforms requires two
tasks:Task1:Drone — Satellite, Task2:Satellite — Drone.There
are significant differences in the performance of different
models in these two tasks. Because the ratio of the drone to
satellite images in the SUES-200 dataset is 50:1, the Recall@K
accuracy of Task2 tends to be higher than that of Taskl.

We propose the “preference coefficient” as an indicator to
evaluate the model’s preference for two tasks. The closer the
“preference coefficient” is to 1, the more balanced the model
performs in Taskl and Task2, and the larger it is, the stronger
the model prefers Task2. The calculation formula is as follows:

Robustness =

(®)

=0

Adaption = 9
y!, represents the Recall@1 accuracy of Task 1, y& represents
the Recall@1 accuracy of Task 2, and n = 4 represents the
task at four heights.

Real-time. In the actual application process, there will be
requirements for the real-time performance of the cross-view
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Fig. 4. Pipeline reads images from the dataset and sends them to the currently selected model for training. After training, the model with the best parameters
is selected and sent to Taskl or Task2 for testing, and the evaluation module evaluates the test results to form an evaluation table.

matching model. Therefore, we refer to the idea of [21] to
evaluate the real-time performance, choose a base model with
better real-time performance, and take its inference time as
the benchmark time which set to 1.00, and the other inference
The time is then denoted as 1.00 x T(0 < T < +00).

IV. METHOD
A. Pipeline

We build a Pipeline to solve the cross-view matching
problem, which is used to train and test different models
and build evaluation systems efficiently. As shown in Fig-
ure 4, in this Pipeline, the leftmost input is the cross-view
matching dataset, and the rightmost output is the values of
each evaluation index, in which the model is a deep neural
network built by the user. The network is divided into a
backbone network and a classification network part. Selecting
different feature extractors in the “Model List” will replace the
backbone network part in the corresponding network structure,
and the user can also customize its network structure. The
details of the network structure of deep neural networks will
be illustrated in the next section. The images in the test
set are input to the model to extract features and complete
Task1:Drone — Satellite, Task2:Satellite — Drone, and the
obtained feature matching results are finally passed to the
evaluation unit to get the evaluation table.

B. Network architecture and loss function

The drone and satellite images included in SUES-200
originate from different data sources, but there are still some
similarities. Our goal in designing the deep learning network
is to extract robust and invariant features in both images
separately and map them to a high-dimensional space to help

the following matching process. After referring to previous
studies, similarly, we build a two-branch deep convolutional
neural network architecture, where one branch is used to
extract features from satellite view images, and the other
branch is used to extract features from drone view images.
To test the effect of different CNN structures on different
source image feature extractors, we refer to the CNN structures
that extract features in two-branches as backbone networks,
and these backbone networks are able to be replaced. In the
training process, we add a fully connected layer with a softmax
layer at the end of the branch to treat it as a classification task.
Each target location is treated as a class to train the whole
network. The network structure is shown in Figure 5.

In recent years, different CNN structures have been greatly
developed. ResNet [27] is widely used as the backbone net-
work [20]-[23] for feature extraction in the field of cross-
view matching due to its clever design structure and excel-
lent performance. With the further research on ResNet and
the emergence of attention mechanism, some scholars have
further improved ResNet, such as SE-ResNet [33],ResNeSt
[34],CMAB-ResNet [35], and these models have achieved
excellent performance on image classification datasets such
as ImageNet [36]. In addition to ResNet, other structured
CNNs are also a hot topic of research, e.g., DenseNet [30],
EfficientNet [37], Inception [38]. Is there a more proper
feature extractor than ResNet in cross-view matching? In our
experiment, we test the improved ResNet and other CNN
structures on SUES-200 and evaluate these models according
to the evaluation system mentioned above.

For the loss function, because the model training process
is considered to deal with a multi-classification task, we
adopt cross-entropy as the loss function, which is typical
in multi-classification tasks. Cross entropy is mainly used
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Fig. 5. The basic Network architectures for cross-view matching. We apply two-branch CNN structures with cross entropy loss to train model.The cosine
distance is used to calculate the similarity between the query and candidate images in the gallery.

to determine how close the actual output is to the expected
output, i.e., the smaller the cross entropy between the network
output and the label, the better the classification ability of the
network.z)(y) is the logarithm of ground-truthy, and p(ylz})
is the the probability of predicted outcome of the model equal
to ground-truth y. The mathematical formula is shown:

o exp(zi(y))
h) = —— L 10
PO = 5 i@ (o
Loss = Y —log(i(y|a})) (11)

1,3
In the two-branch CNN, both outputs of the model need to
be compared with the label and get two loss values. We let
the loss of drone view be L, and the loss of satellite view be
Ly, these two loss values are added to get L;,tq;. We optimize
the whole network through L;,:,;. The equation expression is
shown as follows:

Ltotal = Ls + Ld7 (12)

In the test stage, the query images in the test set are from
drone view and satellite view. We feed the query images to the
model with fixed parameters, remove the classification network
from training layer, and make the backbone network output the
feature vectors directly. The feature vector of drone view is
represented as fy, and the feature vector of satellite view is
represented as fs. Our test aims are to find the most similar set
of feature vectors by cosine distance to measure the similarity

between fy and fs. fqi and fgi are part of the feature vector,
and a smaller cosine distance means that the set of features
is less similar. The larger cosine distance means a smaller
distance between the two features and a greater correlation
between the corresponding features. The formula is shown as
follows:

fdfs l; fdifsi

TAEITA

Cosine =

(13)
2 (Fay | 2 (f)

V. EXPERIMENT

This chapter first describes the experimental setting and
details, followed by a comprehensive evaluation of multi-
ple feature extractors through Pipeline. The impact of multi
queries on the matching performance is explored. In addition,
we test the performance of the transfer learning model on
SUES-200. Finally, we reproduce some classical cross-view
matching models on SUES-200.

A. Implement Details

Different feature extractors are used in our backbone net-
work, and all of them are loaded with ImageNet’s pre-trained
weights to speed up the convergence of the model. However,
the amount of work required to tune so many models to the
optimum is incalculable, so for training, we applied the grid
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TABLE III

THE ROBUSTNESS OF DIFFERENT BACKBONE NETWORKS.

Drone — Satellite

Satellite — Drone

Backbone Robustness Robustness
VGG16-bn 21.74 26.37
ResNet-50 23.43 32.51
SE-ResNet-50 29.80 40.42
ResNeSt-50 23.77 32.95
CBAM-ResNet-50 17.38 22.69
DenseNet-201 26.23 30.44
EfficientNetv1-b4 17.40 27.13
Inceptionv4 18.43 25.38

search method to search for the following hyperparameters
in the network: learning rate, drop out rate, weight decay.
The image size is resized to (384,384) before feeding to the
network, and only the basic image augmentation methods
are used: Random Crop and Random Horizontal Flip. The
optimizer of the neural network is SGD (momentum=0.9),
and the initial learning rates of the backbone network and
the classification network are set to 0.1 times and 1 times of
the learning rate. The learning rate decay is MultiStepLR, and
the parameters of the classification network are initialized with
Kaiming Initialization [39]. Our model is built basing Pytorch,
and all experiments are conducted on an NVIDIA RTX TiTAN
GPU.

B. Evaluation of Different Extractors

Can SUES-200 help the model learn highly discriminative
features? Can Pipeline efficiently perform the tasks from
training, testing to evaluation? In this section, we set up
experiments to comprehensively evaluate feature extractors of
different CNN architectures and use the model with the best
experimental results as the baseline model of SUES-200.

Recall and AP. With the help of Pipeline, we could quickly
train on the SUES-200 to test and evaluate the models.
As shown in Figure 6, we compare the feature extraction
capability of different backbone networks by Recall@K and
AP. SE-ResNet achieved the best performance at all four
flight heights. In the drone view target localization task
(Drone — Satellite), Compared with ResNet, the accuracy of
Recall@1 increases from 43.42%, 49.42%, 54.47% 60.43%
to 55.65%,66.78%,72%,74.05%, the value of AP raises

from 49.65,55.91,60.31,65.78 to 61.92,71.55,76.43,78.26 in
four heights. In in the drone navigation task (Satellite —
Drone), Compared with ResNet, the accuracy of Re-
call@1 increases from 57.50%,68.75%,72.50%,75.00% to
75%,85%,86.25%,88.75%, the value of AP raises from
38.11,49.19,47.94,59.36 to 55.46,66.05,69.94,74.46 in four
heights. The results show that as the flight height of the
drone increases, the drone is less affected by environmental
disturbances and its camera pose. The images camera acquires
become more similar to satellite images, and the Recall@K
and AP of the model improve. Compared with ResNet, SE-
ResNet with SE module can greatly improve the feature extrac-
tion ability of the model’s backbone network. Compared with
other CNN models, such as other versions of ResNet: CBAM-
ResNet, ResNeSt, or the new design ideas of EfficientNet
and Inception, these networks have deeper and more complex
network structures, and previous results have shown that they
can achieve excellent performance on ImageNet. However,
they do not achieve better results on SUES-200, probably
because the features they extract were not suitable for cross-
view matching tasks.

Robustness. As the flight height of the drone affects the
accuracy of the matching system, in order to measure the
robustness of the model to perform positioning or navigation
tasks at different flight heights. We evaluate the robustness of
the model by designing Equations (3)-(8). As can be seen from
Table III, In Taskl (Drone — Satellite), seresnet achieves the
highest value of 29.80, indicating that seresnet can complete
the localization task with high accuracy and strong robustness
at different heights. In Task2 (Satellite — Drone), the robust-
ness index of seresnet is 40.42, indicating that seresnet is able
to extract the required robust features at different heights in
the navigation task.

Preference. We believe that it is essential for practical
applications to choose a suitable model for Taskl or Task2.
Therefore, the primary purpose of the ’preference coefficient”
is to measure whether different models have a preference for
Taskl and Task2. Therefore, the more balanced the perfor-
mance of the model in Taskl and Task2, and the larger the
“preference coefficient” is, the stronger the model’s preference
for Task2 is. As shown in Figure 7, seresnet has a stronger
adaptive ability for both Taskl and Task2.
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TABLE IV
THE MATCHING ACCURACY (%) OF MULTIPLE QUERIES BASED ON THE BASELINE. 50,25,10,5,1 DENOTE MULTIPLE-QUERY IMAGE SETTING

Drone — Satellite

Query 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP
50 66.25 71.61 77.50 80.84 80.00 83.84 82.50 85.49
25 64.38 69.98 76.25 79.87 79.37 83.22 80.00 83.54
10 62.00 67.89 74.25 78.18 77.00 80.77 79.00 82.58
5 61.13 66.84 72.75 76.73 76.25 80.06 77.50 81.29
1 55.65 61.92 66.78 71.55 72.00 76.43 74.05 78.26
TABLE V
THE NUMBER OF PARAMETERS OF ALL MODELS AND THEIR REAL-TIME
174 WITH BENCHMARK
91.65
91.63 . .
1.6 Backbone Params(M)  Drone — Satellite  Satellite — Drone
) VGG16-bn 272.86 1.18 1.17
% 151 ResNet-50 49.24 1.00 1.00
o 91.47 145 SE-ResNet-50 54.30 1.02 1.02
ResNeSt-50 53.09 1.02 1.00
E 1.4 CBAM-ResNet-50 59.30 1.04 1.02
135 DenseNet-201 35.73 1.05 1.02
1.34 ' EfficientNetv1-b4 37.06 1.01 1.00
1.3 131 Inceptionvé4 83.98 1.03 1.01
Tl.25
12 1 t t t t 1
VGG ResNet SE ResNeStCMBA Dense Effi  Incep

Backbone Network

Fig. 7. The preference of different backbone networks. SE-ResNet strikes a
balance between Task 1 and Task 2.

Real-time. In the model inference phase, real-time is a vital
evaluation metric for the model, and it also directly determines
whether the model can be put into practical application.
Therefore, we evaluate the inference speed of different models
under two tasks, it can be seen from Table V. We take the
inference time of ResNet as the base time: 1.00. We can learn
that VGG spends the most time on inference, and Task1 and
Task2 are 1.18 and 1.17 times the base time, respectively,
while the other models still obtain similar inference times with
differences in the number of parameters.

C. Multiple Queries

Does multi-angle feature fusion improve the efficiency of
matching? In previous matching experiments, a single drone-
view image was used as a query for Drone — Satellite.
Each scene in the SUES-200 dataset provides a full 360-
degree view of the drone view image, which provides complete
and comprehensive information about the target scene from
different views. Therefore, if one query cannot describe the
target scene, we can use multiply drone view images as queries
at the same time to explore whether these multi-view query
images can improve the accuracy and precision of matching. In
the evaluation, we average the features obtained from multiple
images and use the average features they obtain as the query.
It can be seen from Table IV, we set the multiple-query image
to 50, 25, 10, 5, 1, and the experimental results show that the
multiply queries contain more and more images, and the Re-

call@K and AP of model matching are improved accordingly.
When the average features of 50 images are used as queries,
compared with the queries of single images from 150m to
300m, the accuracy is improved by 10.60%,10.72%,8%,8.45%
. It also shows that the multi-angle features are more helpful
for drone localization tasks when flying at lower heights.

D. Transfer Learning

Can previous datasets help the model learn features
at different heights? Do pre-trained weights have an
impact on the model training? We test whether the models
obtained from training on the ImageNet dataset, as well as
the University-1652 dataset, can extract discriminative features
at different heights. As a control, we take training from
scratch on SUES-200 with ImageNet as pre-trained weights
and University-1652 as pre-trained weights. The backbone
networks in the above networks are all SE-ResNet50. As can
be seen from Table VI, the University-1652-based transfer
learning model achieves surprising results compared to Ima-
geNet, which validates that University-1652 can be applied to
real scenes. But University-1652’s ability at different heights
is still limited because the dataset does not distinguish the
effects of different heights. Further, we find that the model
trained from scratch is much less capable of extracting features
than the model trained based on ImageNet. Another interesting
finding is that the model starting training based on the pre-
trained weights of University-1652 perform better than the one
based on ImageNet, which also shows that the initialization
weights of the model are significant.

E. Other Baseline Model in SUES-200

How does the classical cross-view matching model per-
form on the SUES-200? Some previous works [20], [22]
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TABLE VI
TEST RESULTS OF TRANSFER LEARNING MODELS AND PRE-TRAINED WEIGHTS ON SUES-200.

Drone — Satellite

Traning Set 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP
ImageNet 8.65 12.19 10.13 13.95 13.55 17.96 14.27 18.84
University-1652 32.33 39.01 40.55 47.25 45.63 52.27 50.05 56.26
SUES-200(from scratch) 7.40 12.44 8.90 14.03 8.05 13.94 7.90 14.22
SUES-200(ImageNet pre-trained) 55.65 61.92 66.78 71.55 72.00 76.43 74.05 78.26
SUES-200(U1652 pre-trained) 62.30 67.45 69.10 73.88 76.50 80.69 80.08 83.36
Satellite — Drone
Traning Set 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP
ImageNet 10.00 6.79 7.50 6.38 18.75 11.96 26.25 16.00
University-1652 25.00 23.69 37.50 32.49 43.75 39.19 48.75 41.81
SUES-200(from scratch) 11.25 8.01 11.25 9.55 10.00 10.21 12.50 9.85
SUES-200(ImageNet pre-trained) 75.00 55.46 85.00 66.05 86.25 69.94 88.75 74.46
SUES-200(U1652 pre-trained) 80.00 60.62 83.75 72.28 88.75 77.84 88.75 80.08
TABLE VII
TEST PERFORMANCES OF LCM AND LPN oN SUES-200
Drone — Satellite
Methods 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP
SUES-200 baseline 55.65 61.92 66.78 71.55 72.00 76.43 74.05 78.26
LCM [20] 43.42 49.65 49.42 55.91 54.47 60.31 60.43 65.78
LPN(block=4) [22] 61.58 67.23 70.85 75.96 80.38 83.80 81.47 84.53
Satellite — Drone
Methods 150m 200m 250m 300m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP
SUES-200 baseline 75.00 55.46 85.00 66.05 86.25 69.94 88.75 74.46
LCM [20] 57.50 38.11 68.75 49.19 72.50 47.94 75.00 59.36
LPN(block=4) [22] 83.75 66.78 88.75 75.01 92.50 81.34 92.50 85.72

design deep neural networks that achieve excellent perfor-
mance on different cross-view matching datasets. We mainly
select two works in the cross drone view and satellite view
domains, migrated their backbone network designs into our
pipeline, and put our dataset into pipepline for training. The
experimental results are shown in Table VII. Due to the feature
partitioning strategy presented by the LPN for extracting
semantic information, the strategy is able to extract global
features of the image instead of focusing on the center of
the image alone. LPN achieves excellent performance on both
University-1652 and SUES-200, especially Taskl, which has
6% - 8% improvement at each height.

VI. ABLATION STUDY

A. Effect of image size

Do different image resolutions cause loss of image
information? The resolutions of the drone and satellite images
in the SUES-200 dataset are 512 x 512 and 1080 x 1080, both
of which contain much unused detail information. Therefore,
in the ablation learning phase, we resize the input images to
512 %512 and 256 x 256, keeping all other conditions constant,
as shown in Table VIII. When we increase the resolution to
512 x 512, there is a 1%-2% improvement in both tasks at
each height. Meanwhile, its real-time performance is 20%
lower than before at 384 x 384, and there is no advantage
in robustness. Moreover, when we reduce the resolution to
256 x 256, the performance of both tasks show a large decline.

Indicating that a large amount of useful information is lost in
the image at 256 x 256, which lead to the model’s inability to
extract valid features.

B. Effect of sharing weights

Do sharing weights help the model learn better features?
As the flight height of the drone rises, the drone and satellite
images will become more and more similar, so is it possible to
improve the model learning efficiency by sharing the weights
of both branches? We test the effect of sharing model weights
on the final test results in the baseline model. Figure 8 show
that the evaluation metrics of both tasks show significant
decreases when the sharing weights are available, but the
difference values between the sharing and unsharing weights
decrease as the drone flight height increases. As the drone’s
height rises, images collected by the drone are more and more
similar to satellite view images. A possible explanation for this
might be that sharing weights can help model extract more
efficient features in similar images.

C. Effect of different loss function

Do different loss functions affect the learning effect of
the model? The most common loss functions in previous
studies of matching retrieval tasks are contrastive loss [40]
and triplet loss [41], and these loss functions achieve good
performance in other works. To verify the feasibility of these
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TABLE VIII
ABLATION STUDY ON IMAGE SIZE DURING INFERENCE ON SUES-200.

Drone — Satellite

Im . 150m 200m 250m 300m Tim Robustn
48C SIZC  Recall@l AP Recall@l AP Recall@l AP  Recall@l AP ¢ Robusiness
256 44.38 50.65 56.52 62.09 62.75 68.35 66.30 71.69 0.84 24.12
384 55.65 61.92 66.78 71.55 72.00 76.43 74.05 78.26 1.02 29.80
512 54.85 61.04 65.25 70.72 74.23 78.67 79.18 82.68 1.30 27.35
Satellite — Drone
Image size 150m 200m 250m 300m Time  Robustness
& Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP
256 63.75 37.85 80.00 54.48 82.50 62.71 82.50 6391 0.85 31.57
384 75.00 55.46 85.00 66.05 86.25 69.94 88.75 74.46 1.02 40.42
512 76.25 55.04 86.25 66.81 88.75 70.98 92.50 75.67 1.28 38.69
—*— sharing weights —v— sharing weights
—v— no sharing weights 100+ —2— no sharing weights|
74.05 : . 8875
86.25
69.03, 85, —=h—
< i < 80+ B L
<601 < /
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Fig. 8. The accuracy of Recall@1 without sharing weights is always higher than that of Recall@1 with sharing weights, but the gap decreases as the height

rises.(a) Drone — Satellite (b)Satellite — Drone

TABLE IX
ABLATION STUDY ON LOSS FUNCTION DURING INFERENCE ON SUES-200

Drone — Satellite

150m 200m

250m 300m

Loss Recall@] AP Recall@el AP Recall@l AP Recall@l ~ Ap  Robustness
CrossEntropy [40] 55.65 61.92 66.78 71.55 72.00 76.43 74.05 78.26 29.80
Contrastive [41] 56.40 62.23 65.75 71.21 72.80 77.23 76.72 80.97 28.74
Triplet(margin=0.3) 57.25 62.92 63.27 68.92 71.07 75.94 73.83 78.00 29.15

Satellite — Drone
Loss 150m 200m 250m 300m Robustness
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP
CrossEntropy [40] 75.00 55.46 85.00 66.05 86.25 69.94 88.75 74.46 40.42
Contrastive [41] 77.50 55.22 82.50 66.74 85.00 65.72 88.75 75.64 44,76
Triplet(margin=0.3) 75.00 52.13 82.50 60.54 87.50 70.03 88.75 74.73 39.10

loss functions on our baseline model, we strictly keep the
backbone network as well as other parameters constant during
the experiments. From Table IX, we observe that each of these
three loss functions has its advantages and disadvantages in
terms of Recall@K and AP. However, when evaluating the
robustness metric, cross-entropy loss achieves the best score
of 29.80 in Task1 and contrastive loss achieves 44.76 in Task2.

VII. VISUALIZATION

In this section, we visualize the retrieval results of SE-
ResNet on SUES-200. Figure 9 shows the visualization results

of the baseline model under Rank 5 at different heights and
two tasks. It can be seen that the accuracy of model retrieval
keeps improving with the rise of height and the ability to
distinguish similar scenes increases. Furthermore, we also
visualize the heat maps generated by different models on
SUES-200. Figure 10 compare the results of ResNet, Dense,
and SE-ResNet on drone view and satellite view. From left to
right: the original image under drone view, the heat maps on
different heights, the heat map under satellite-view. The heat
maps show that Dense’s activation area is larger than ResNet,
while the area activated by SE-ResNet is more consistent with
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TABLE X
VIT [42] ACHIEVES A OUTPERFORM RESULT ON SUES-200.

Drone — Satellite

150m 200m

250m 300m

Methods  pocall@l AP Recall@l AP Recall@l AP Recall@l AP ™€
ViT-b-p16 59.32 64.94 62.30 67.22 71.35 75.48 77.17 80.67 2.46
Satellite — Drone
Methods 150m 200m 250m 300m Time
) Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP
Vit-b-p16 82.50 58.88 87.50 62.48 90.00 69.91 96.25 84.10 2.48
Satellite ——Drone Drone Satellite

150m

200m

250m

300m

False-matched
Images

True-matched
Images

Fig. 9. Qualitative image retrieval results. Top-5 retrieval results of drone view target localization on SUES-200. Top-5 retrieval results of drone navigation

on SUES-200.

drone-view 150 200 250 300 satellite-view

resnet

seresnet

dense

Fig. 10. Visualization of heatmaps. Heatmaps are generated by ResNet,
baseline and Dense

the shape of the main target in the scene.

VIII. DISCUSSION

In this study, we find significant differences in the cross-
view matching results between the drone view and the satellite
view at different heights. At the heights of 150m and 200m, the
drone is more influenced by the surrounding environment and
the camera pose, and the acquired images are very different
from the satellite view images. So there is a low accuracy
when the drone flight at a low height. However, as the flight
height of the drone rises, the drone is less influenced by
the environment and the camera pose, and the accuracy of

feature matching gradually increases. At the same time, we
believe that the bottleneck of previous research on cross-view
matching studies lies in the lack of a suitable feature extractor.
So we test the feature extraction effect of different feature
extractors through our pipeline. The data show that the ResNet
with the module of Squeeze-and-Excitation module can extract
the most robust features with the best overall performance.
SUES-200 distinguishes differences in drone flight at different
heights. Our work fills a gap in cross-view matching field and
includes a wider variety of scenarios than previous work.

However, SUES-200 still suffers from a small number of
samples and a limited degree of flight height differentiation.
Our baseline model directly classifies the feature maps from
the backbone network, lacking consideration for the offset and
image size changes that occur when aerial images of drones
are taken. In the past few years, transformer architecture [43]
has made a breakthrough in the field of vision [42], [44], [45],
and we also try to use ViT [42] as the backbone network to
extract features, as shown in Table X, and the experimental
results greatly exceeded our expectations, which shows that
transformer architecture has great potential in the field of
cross-view matching. In the future, the main issues to be
considered are how to solve the offset generated by the drone
flight and how to adapt to the impact of different heights on the
drone aerial images. We believe that there is a large amount
of redundant information in the images captured by the drone,
and that this redundant information may be caused by the
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offset of the drone during flight or by interference from the
surrounding environment. Therefore, we hope to design a deep
neural network to filter out the invalid redundant information
in the images.

IX. CONCLUSION

In conclusion, Our study investigates the problem of image
matching across drone and satellite views at different heights.
We propose a multi-height, multi-scene benchmark called
SUES-200, which contains multi-height drone and satellite
view images for 200 locations. We also present new evaluation
metrics and a pipeline to assess the effectiveness of the
new model on the SUES-200. Our experiments find that the
accuracy and precision of matching increase as the drone’s
flight height rises. In addition, after evaluating different fea-
ture extractors, we publish the model with the best overall
performance as the baseline model of SUES-200. We also
observe that appropriate pre-trained weights and multi-angle
image fusion can help the model achieve even better result,
pointing the way to improve matching efficiency further. In the
future, we will continue our research on cross-view matching
to eliminate the interference information in drone aerial images
and improve the performance of drones at low heights.
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